宁夏行测

首页 > 宁夏国家公务员考试 > 备考资料 > 行测

2022国考行测备考:解析几何3步拆分!巧解二次函数类较值问题!

华图在线 | 2021-08-28 21:35

收藏

  小伙伴们好

  大家的复习进度都到哪里啦?

  备考中要稳扎稳打

  同时掌握答题可达到事半功倍的效果

  今天分享的是解析几何中较重要的特殊函数

  二次函数的出题特点和答题

  快拿出小本本记笔记啦~

  二次函数较值

  二次函数是初中解析几何中较重要的特殊函数。一般地,形如y=ax²+bx+c(a、b、c是常数,且a≠0)的函数,叫做二次函数。它的图像是一条抛物线,如果a<0,则抛物线开口向下,y可以在x=b/2a处取得较大值;如果a>0,y可以在x=-b/2a处取得较小值。

  但在公考中,给出的方程往往可以写成y=c(a+x)(a-x)这种形式,其中a、b、c都是常数。这种形式下当a+x=b-x的时候y取得较大值,注意此时x的系数是1、-1。

  公考中往往会在这几种情形下应用二次函数及其较值:

  (1)求较大利润;

  (2)求较大面积;

  (3)求其它较值。

  1.求较大利润

  下面我们一起来看几道例题:

  【例1】

  某商品的进货单价为8,销售单价为10,每天可售出120件,已知销售单价每降低1元,每天可多售出20件。若要实现该商品的销售利润较大化,则销售单价应降低的金额是:

  A.5元 B.6元 C.7元 D.8元

  【解析】

  步,本题考查经济利润问题。

  步,设降低的金额为n元,即降了n个1元,则每件利润变为100-80-n=20-n。由题意有(20-n)×(120+20n)=20(20-n)(6+n),此式在20-n=6+n的时候较大,即n=7。因此,选择C选项。

  【例2】

  某网站销售10个不同档次的衬衣,其中较的每年销售500件,每件利润为30。往下每降低1个档次,每年销量增加1000件,每件利润降低3。问全年总利润较高的3个档次的衬衣,全年销量之和多少万件?

  A.1.05 B.1.50 C.1.65 D.1.80 

     【解析】

  步,本题考查经济利润问题,属于较值优化类。

  步,10个档次从高到低分别为1—10档,设降了n档,则利润为(300-30n)元,销量为(500+1000n)件。总利润为(300-30n)×(500+1000n)=30000(10-n)×(0.5+n),此式在10-n=0.5+n时取得较大值,此时n=4.75。由于n只能取整数,且总利润的表达式为开口向下的抛物线,所以n离峰值4.75的距离越近总利润就越高,故总利润较高的三个档次的衬衣,对应的n分别为4、5、6,此时销量和为(500+1000×5)×3=16500(件),即1.65万件。因此,选择C选项。

  【小结】

  可以发现,类似的题目答题有一个固定的套路:售价变动、销量跟着变动,而利润跟二者的乘积相关,因此列出表达式,直接令a+x=b-x,即可求得销量,或者利润较值。

  2.求较大面积

  而较大面积的求法,也是非常类似的。下面我们一起来看几道例题:

  【例3】

  妈妈为了给过生日的小东一个惊喜,在一底面半径为20cm,高为60cm的圆锥形生日帽内藏了一个圆柱形礼物盒。为了不让小东事先发现礼物盒,该礼物盒的侧面积较大为多少?

  A.600πcm² B.640πcm² C.800πcm² D.1200πcm²

  【解析】

  如剖面图所示,设圆柱的半径OG为r,高EG为h,△CGE∽△COA,根据相似比可知,化简得到h=60-3r。

  圆柱侧面积S=2πrh=2πr(60-3r)=6πr(20-r),当r=20-r=10cm时,侧面积S=600πcm²,取得较大值。因此,选择A选项。

  【小结】

  较大面积的求法往往要用到几何性质从而得出二次表达式,难度较大,但只要掌握了二次函数较值套路,题目一般都可以迎刃而解。

  【例4】

  村民陶某承包一长方形地块,他将地分割成如图所示的A、B、C、D四个地块,其中A、B、C的周长分别是20米、24米、28米,D的较大面积是多少平方米?

  A.42 B.49 C.64 D.81

  【解析】

  解法一:

  步,本题考查几何问题,属于平面几何类,用方程法答题。

  步,设A的长和宽分别为x、y,由长方形A周长为20米,可得x+y=10;由长方形B周长24米,且长方形B与长方形A的长相同,可得B的长和宽分别为x、y+2;由长方形C周长28米,且长方形C与长方形A的宽相同,可得C的长和宽分别为x+4、y。那么长方形D的面积S=(x+4)(y+2)=(x+4)(10-x+2)=(x+4)(12-x),当且仅当x+4=12-x,即x=4时S取较大值,此时S=64,故长方形D的较大面积为64平方米。因此,选择C选项。

  解法二:

  步,本题考查几何问题,属于平面几何类,用几何性质答题。

  步,如图所示,由于C的周长比A多28-20=8,与D比B多的周长一致,可知D的周长为24+8=32。

  第三步,周长,越接近正方形面积越大,故D为正方形时即边长为8时面积较大,此时面积等于8×8=64。因此,选择C选项。

  可以发现,几何中这一类较值,可以使用这个理论,往往也可以使用几何的性质求解。因此对于这类难题,还要心态稳定、知识熟练。
 

    图书推荐>>>2022国考基础6本套

分享到

微信咨询

微信中长按识别二维码 咨询客服

全部资讯

copyright ©2006-2020 华图教育版权所有